Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human.
نویسندگان
چکیده
Genetic variation underlies a significant proportion of the individual variation in human susceptibility to toxicants. The primary current approaches to identify gene-environment (GxE) associations, genome-wide association studies and candidate gene association studies, require large exposed and control populations and an understanding of toxicity genes and pathways, respectively. This limits their application in the study of GxE associations for the leukemogens benzene and formaldehyde, whose toxicity has long been a focus of our research. As an alternative approach, our published work has applied innovative in vitro functional genomics testing systems, including unbiased functional screening assays in yeast and a near-haploid human bone marrow cell line. Through comparative genomic and computational analyses of the resulting data, human genes and pathways that may modulate susceptibility to benzene and formaldehyde were identified, and the roles of several genes in mammalian cell models were validated. In populations occupationally exposed to low levels of benzene, we applied peripheral blood mononuclear cell transcriptomics and chromosome-wide aneuploidy studies in lymphocytes. In this review, we describe our comprehensive toxicogenomic approach and the potential mechanisms of toxicity and susceptibility genes identified for benzene and formaldehyde, as well as related studies conducted by other researchers.
منابع مشابه
Functional Toxicogenomic Profiling Expands Insight into Modulators of Formaldehyde Toxicity in Yeast
Formaldehyde (FA) is a commercially important chemical with numerous and diverse uses. Accordingly, occupational and environmental exposure to FA is prevalent worldwide. Various adverse effects, including nasopharyngeal, sinonasal, and lymphohematopoietic cancers, have been linked to FA exposure, prompting designation of FA as a human carcinogen by U.S. and international scientific entities. Al...
متن کاملInvestigation of formaldehyde removal from synthetic contaminated air by using human hair
Background: Human hair can be used as an inexpensive and accessible adsorbent to remove a variety of pollutants from air. Although several studies have been done on removal of formaldehyde from wastewater by human hair, to date no study has investigated using hair to remove formaldehyde from air. Therefore, the aim of this study was to remove formaldehyde from synthetic contaminated a...
متن کاملSystems biology of human benzene exposure.
Toxicogenomic studies, including genome-wide analyses of susceptibility genes (genomics), gene expression (transcriptomics), protein expression (proteomics), and epigenetic modifications (epigenomics), of human populations exposed to benzene are crucial to understanding gene-environment interactions, providing the ability to develop biomarkers of exposure, early effect and susceptibility. Compr...
متن کاملAdverse effects of long-time exposure to formaldehyde vapour on testicular tissue and sperm parameters in rats
Formalin is widely used in industry and in medicine (as tissue fixative and disinfectant).It contains reactive molecules which have been known for its cytotoxic effects. To evaluate the effect of formalin exposure on the testicular tissue and sperm parameter from neonatal period through physical and sexual maturity, 28 male Wister rats were assigned into two equal test and control groups. The t...
متن کاملThe Effects of Formaldehyde Among Medical Students in Anatomy Dissection Laboratory of Shiraz School of Medicine
Purpose: The aim of this study is to evaluate the effects of formaldehyde vapor on eyes, nose and skin and pulmonary function of medical students, as well as, indoor concentration of formaldehyde (FA) vapor in dissection laboratory. Materials and Methods: One hundred sixty five (165) medical students were selected randomly. Students were excluded if they had had history of smoking, or any condi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1310 شماره
صفحات -
تاریخ انتشار 2014